
Vol.:(0123456789)1 3

Theoretical Chemistry Accounts          (2021) 140:37  
https://doi.org/10.1007/s00214-021-02731-2

REGULAR ARTICLE

Variational properties of auxiliary density functionals

Daniel Mejía‑Rodríguez1   · S. B. Trickey1

Received: 28 October 2020 / Accepted: 5 March 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
The evolution of variational Coulomb fitting from a purely practical scheme to reduce computational burden to a formal vari-
ant of Hohenberg–Kohn–Sham density functional theory (auxiliary density functional theory, ADFT) is discussed. After a 
summary of the historical evolution, an analysis of its connection with the Hohenberg–Kohn theorem is given, some implica-
tions for the Euler equation and for time-dependent DFT are given and some implications for the deMon2k code delineated.
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1 � Motivation and historical context

1.1 � Motivation

Auxiliary density functional theory (ADFT) [1], in particu-
lar its structure and underpinnings, is the focus of this paper. 
Its implementation provides a computational cost scaling 
advantage for the deMon2k code [2] that is of particular 
value for studying very large molecules and clusters. An 
example in which we participated is a very recent study of 
a spin-crossover complex. The target molecule is known 
in chemical shorthand as Mn(taa) [3]. It has 53 atoms and 
224 electrons, rather low symmetry, and a high-spin state 
nearly degenerate with its low-spin ground state. The accu-
rate determination of such small energy difference requires 
basis sets of triple- or quadruple-zeta quality. Thus, Mn(taa) 
exemplifies the kind of system for which deMon2k is a very 
useful exploratory tool.

ADFT also is interesting because it is a formal structure 
that has emerged from a series of developments of prag-
matic computational approximations. Hence, some aspects 
of ADFT seem rather little analyzed. We begin, therefore, 
with a summary of its antecedents and origins. They are 
valuable for understanding ADFT more clearly and formally 

than heretofore. We remark that the paper deliberately is 
written in somewhat pedantic style in the hope that, among 
other benefits, it will be helpful to students who use and 
improve deMon2k.

1.2 � Historical context

At the dawn of molecular and solid electronic structure com-
putation and codes, the obvious computational bottleneck 
was Hartree–Fock exchange. To circumvent that, Slater [4] 
introduced what subsequently became recognized as the 
local density approximation for the exchange (X) functional 
in Hohenberg–Kohn–Sham density functional theory (DFT) 
[5, 6]. Similarly, the X � parametrized form [7] later came to 
be recognized as a semi-empirical approximation to the KS 
exchange-correlation (XC) functional.

Introduction of the KS potential (or its Slater anteced-
ent) and DFT more generally immediately connected the 
many-electron problem to the one-electron, local potential 
problem that already was familiar then (e.g., central-field 
atom, empirical band-structure Hamiltonians, etc.). In the 
context of nuclear-site-centered basis function expansions of 
one-electron orbitals and the resulting secular equation [8, 
9], DFT and its precursors also exposed two computational 
bottlenecks. One is shared with Hartree–Fock, the N4

e
 scal-

ing of the classical Coulomb repulsion (Hartree energy, EH ) 
matrix elements. ( Ne is the number of electrons.) The other 
is the nonlinear dependence of the XC energy and potential 
upon the electron number density

 *	 Daniel Mejía‑Rodríguez 
	 dmejiarodriguez@ufl.edu

1	 Department of Physics, Center for Molecular Magnetic 
Quantum Materials, Quantum Theory Project, University 
of Florida, Gainesville, FL 32611, USA

http://orcid.org/0000-0002-0350-2941
http://crossmark.crossref.org/dialog/?doi=10.1007/s00214-021-02731-2&domain=pdf


	 Theoretical Chemistry Accounts          (2021) 140:37 

1 3

   37   Page 2 of 9

Here the �i and fi are the KS orbitals and occupation num-
bers, respectively. Slater local exchange depends functionally 
on n1∕3 . As is well-known by now, more accurate approxima-
tions have more complicated nonlinear n-dependence.

These two problems were addressed pragmati-
cally quite early via fitted auxiliary densities. For the 
VH ∶= �EH[n]∕�n matrix element problem, Baerends, 
Ellis, and Roos (BER) [10] used ordinary least-squares 
fitting to give an auxiliary density in the form of a finite 
linear expansion in a basis {�},

Replacement of EH[n] by EH[ñ
BER] and evaluation of the 

XC energy Exc[n] by quadrature on a grid then gave com-
putational scaling ∝ N2

e
 . But the total energies were rather 

poor because of the non-variational determination of the 
coefficients xBER

i
 . Amelioration of that problem by use of 

large charge-fitting basis sets introduced numerical stability 
problems.

In the BER treatment, both the orbital and auxil-
iary basis sets were of Slater-type orbitals (STOs). As 
the computational advantages of Gaussian basis func-
tions [11] drove their adoption in preference to STOs, 
Sambe and Felton [12, 13] introduced an exchange fit 
for n1∕3(�) with a Gaussian-type basis separate from 
both the Gaussian-type orbital (GTO) basis and the 
Gaussian-type charge-fitting basis. The advantage 
conferred was that all of the matrix elements in the 
secular equation could be evaluated analytically with 
three-center integrals at most. Fitting and associated 
numerical integral weights were required only for aux-
iliary representations of the bland, nodeless density 
and its cube root. Again, however, the non-variational 
procedure necessitated very large basis sets and intro-
duced numerical stability difficulties. (Independently, 
a small basis (STO-3G) variant was done with X-den-
sity fitting only [14]. Perhaps because of the resulting 
N4
e
 scaling, it had essentially no impact on subsequent 

development.)
The EH[n] variational stability problem was solved 

with the introduction of variational Coulomb fitting (also 
known as robust fitting) by Dunlap, Connolly, and Sabin 
(DCS hereafter) [15]. The idea had been presented ear-
lier by Whitten [16] but gone unnoticed. See Ref. [17] for 
a review of subsequent literature and of the relationship 
between variational Coulomb fitting and superficially simi-
lar but non-variational algorithms known generically as 
“RI methods.” Essentially, DCS showed that minimization 
of the density-error Coulomb repulsion

(1)n(�) ∶=
∑

i

fi|�i(�)|2 ,

(2)ñBER(�) ∶=
∑

i

xBER
i

𝛼i(�) ≈ n(�).

with

provides a variational (lower bound) determination of the 
coefficients in the auxiliary density defined as

Thus, if everything else in the secular equation were to be 
handled so as to preserve the HK variational property, vari-
ational Coulomb fitting would present a min-max problem 
for coding [18].

In their paper and their code, DCS retained the 
Sambe–Felton XC fitting approach. The XC auxiliary 
density expansion used a separate Gaussian basis with 
least-squares determination of coefficients against the true 
density, i.e., Eq. (1). The same was true for the extension 
to periodic systems by Mintmire, Sabin, and Trickey [19]. 
(Periodically bounded systems also require fitting to neu-
tral densities. That is not an issue here.) In both codes, 
the computational cost issue with the Sambe–Felton XC 
auxiliary density is that it requires construction of n(�) at 
each SCF cycle, itself a task quadratic in the orbital basis. 
In essence the Hartree energy computational cost had been 
reduced sufficiently that the XC energy cost was the new 
bottleneck.

So the next innovation and simplification was Boettger’s 
“fit-to-fit.” Introduced almost invisibly (mentioned in only 
one dependent clause) in Ref. [20] as part of the evolution 
of the periodic system code FILMS, on a practical level 
the innovation was simple. One does the Sambe–Felton 
least-squares XC fitting to the auxiliary variational-Cou-
lomb-fitted density, ñ , instead of to n. Since ñ is linear in 
auxiliary basis functions, using it as the reference den-
sity is much faster than the original Sambe–Felton XC fit. 
Boettger’s reasoning was straightforward physics: since ñ 
is good enough for calculating a large contribution to the 
total energy, EH[n] , and can be refined systematically, ñ 
surely ought to be good enough for calculating a contribu-
tion that is smaller in magnitude, Exc . Fit-to-fit was carried 
over into GTOFF, the successor 2D and 3D periodic code 
to FILMS [21].

Fit-to-fit was incorporated in only one other code to 
our knowledge, ParaGauss [22]. That aside, conceptually 
fit-to-fit is important because it comes close to converting 
the original KS problem, determination of n(�) , into the 
problem of determining a new density functional, namely 

(3)ΔEH[n] =∫ d�1 ∫ d�2
Δn(�1)Δn(�2)

r12

(4)∶=[Δn |Δn ]

(5)Δn(�) ∶= n(�) − ñ(�)

(6)ñ(�) =
∑

i

xi𝛼i(�) .
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E[ñ[n]] , with the original self-consistent KS equation used 
to solve for ñ and evaluated on it. Only the non-variational 
second fit in fit-to-fit prevents that mapping from being 
the case.

It appears that the first direct use of an auxiliary density 
in the context of the XC contribution was by Fan and Zie-
gler [24]. A critical point is that they used ñBER (in terms of 
STOs), not the variational ñ . They separated Exc into what 
they called a local and (inaccurately) a nonlocal part. In fact 
those were a local density approximation (LDA) part and 
a generalized gradient approximation (GGA) correction, 
respectively. They focused on the resulting decomposition of 
the XC potential into �Exc∕�n = vxc ≈ vL

x
+ vL

c
+ vGGA

x
+ vGGA

c
 

in modern notation and used the valence auxiliary density, 
in our notation ñBER

v
 ( ̄𝜌v in theirs), to evaluate the GGA 

part. They state that “It was found computationally expedi-
ent to evaluate vGGA

x
+ vGGA

c
 from ñBER

v
 . Tests revealed that 

the error introduced by using ñ rather than n in evaluating 
vGGA
x

+ vGGA
c

 is less than 0.001 a.u. ...”. (Again, we have 
updated the notation.) That is pure substitution, not fit-to-fit 
nor ADFT. Nothing was said about how the “local” part, 
vLDA
x

+ vLDA
c

 , was done nor how Etot was calculated. Nor, 
regrettably, did they give any details about what was “com-
putationally expedient.”

Somewhat similar direct use of a non-variational aux-
iliary density to evaluate Exc approximately (as a “Harris 
functional”) appears in Ref. [25]. Perhaps because both that 
paper and Fan and Ziegler used STO basis functions, there 
is little discernible impact of them on the mainstream GTO-
basis-method literature.

Independently of fit-to-fit and somewhat later, the devel-
opers of the deMon2k code came to the idea of direct use 
of ñ from variational Coulomb fitting in the evaluation of 
both Exc and vxc = �Exc∕�n as well as in evaluation of EH[n] 
[1, 26]. Again, this was a re-discovery of an idea, in this 
case apparently first put forth by Laikov [27] who, ironically 
enough, did not mention fit-to-fit. Laikov implemented his 
scheme in the PRIRODA suite, which has seen much use in 
the Russian Federation [28]. Similarly, upon learning (later) 
of fit-to-fit, the lead deMon2k developers viewed it as con-
firmation of the merit of the direct use of ñ they were pursu-
ing. Direct use of ñ takes the physical motivation of fit-to-fit 
and eliminates the overhead and uncontrolled approxima-
tion associated with least-squares fitting for the XC density. 
The result appears to be a theoretical construct for finding 
ñ[n] . It has been dubbed ADFT [1] and arguments given for 
its validity. A quite similar argument and implementation, 
called the model density approach (MDA), appeared very 
shortly thereafter [29], although the original implementation 
in ParaGauss appears to date as far back as 1997 [30, 31].

The emergence of ADFT as a theoretical construct within 
DFT is rather remarkable. As just sketched, use of aux-
iliary densities in KS DFT calculations began and grew as 

thoroughly pragmatic steps for computational efficiency. 
What has emerged is a formalism that in a sense is reverse-
engineered from those computational approximations. It is a 
somewhat subtle, comparatively little-studied, and (we think) 
inadequately justified formal structure. We address those 
issues by revisiting the line of reasoning presented in Refs. [1, 
27, 29] and connecting that reasoning directly to the underly-
ing DFT theorems.

The main realization of AFDT is in the deMon2k code. 
(MDA is implemented in ParaGauss but that code is not widely 
distributed.) Therefore, in the next section we outline relevant 
aspects of ADFT. After that we refine the original ADFT rea-
soning to identify relationships with the underlying HKS quan-
tities, and then give a formal analysis connecting ADFT to the 
constrained-search form of the HK theorems. We make con-
nection with time-dependent DFT (tdDFT) and conclude with 
a few observations and remarks about technical implications.

2 � deMon2k code

deMon2k [2] is a KS DFT quantum-chemistry code, that is, 
a code for isolated molecules or clusters. Its design objec-
tives include high computational efficiency and low memory 
requirements for use on large systems. It uses the linear com-
bination of atomic orbitals (LCAO) ansatz [8]. Thus, each KS 
molecular orbital (MO) is expressed as a linear combination of 
atom-centered (nuclear-site centered) basis functions

The basis functions, �(�) , commonly are called atomic orbit-
als (AOs). The MO coefficients, C�i , are to be determined 
variationally. The exact form of the AOs is unimportant for 
this discussion; we note only that deMon2k uses contracted 
GTOs. Expressed in terms of the AOs, the KS electron num-
ber density, Eq. (1), is

with

called the AO density matrix. It follows, as already noted, 
that computation of the Hartree energy

scales formally as O(N4
basis

) , where Nbasis is the number of 
basis functions ∝ Ne.

(7)�i(�) =
∑

�

C�i ��(�).

(8)n(�) =
∑

�,�

P�� ��(�)��(�)

(9)P�� ∶=
∑

i

fi C�i C�i

(10)EH[n] =
1

2
[ n | n ]
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To avoid that, deMon2k uses the auxiliary density, ñ(�) , 
Eq. (6) from variational Coulomb fitting. The precise form 
of the auxiliary basis functions �j(�) in deMon2k is irrele-
vant here (but see remarks in Sect. 6). They are uncontracted 
Hermite–Gaussian-type orbitals.

The effect is to approximate EH[n] with some functional 
ẼH[ñ, n] of ñ(�) and, possibly, of n(�) explicitly as well. Note 
the tilde on ẼH . It signifies an important distinction. For the 
ensuing discussion, a convenient formulation of variational 
Coulomb fitting as done in deMon2k is to determine ẼH 
through linear order in Δn(�) . One has

The error in approximating EH[n] by ẼH[ñ, n] is EH[Δn] ⩾ 0 , 
so the DCS variational minimization of that error to opti-
mize ñ(�) is

Given a fixed auxiliary basis {�(�)} , the only variational 
freedom is in the fitting coefficients {xi} . Thus, the extremum 
gives

In notation currently used in conjunction with deMon2k, 
this is

with Gij ∶=
[
�i | �j

]
 and Ji[n] ∶=

[
n | �i

]
.

It is important to note that deMon2k uses an uncon-
strained density fit. There is no constraint corresponding to 
∫ d�ñ(�) = Ne . To the best of the authors’ knowledge, the 
constraint was dropped since version 2.1 of the code around 
2005 (note that Refs. [1] and [38] mentioned the constraint.) 
We return to that point below, and note only that a posteriori 
normalization checks typically show a density normalization 
error of one part in a thousand or less. Here, the absence of 
that constraint becomes important because Eqs. (13) and 
(14) mean that

It follows easily that

exactly in this unconstrained fit. If a norm-preserving con-
straint with Lagrange multiplier � were to be used, the cor-
responding identity would be

(11)
EH[n] = EH[ñ + Δn] =EH[ñ] + [ ñ |Δn ] + EH[Δn]

≡ ẼH[ñ, n] + EH[Δn] .

(12)𝛿
(
EH[n] − ẼH[ñ, n]

)
= ∫ d�

𝛿ẼH[ñ, n]

𝛿ñ(�)
𝛿ñ(�) = 0

(13)

∑

j

[
𝛼i | 𝛼j

]
xj =

[
n | 𝛼i

]

[
ñ | 𝛼i

]
=
[
n | 𝛼i

]
.

(14)�� = �[n]

(15)2EH[ñ] = [ n | ñ ] .

(16)ẼH[ñ] = EH[ñ]

Observe that Eq. (13) still holds. It is straightforward to 
demonstrate that

thereby confirming that � vanishes for a perfect fit (against 
the Coulomb metric) and is small for large systems with 
realistic fitting precision.

The computational outcome of this variational Coulomb 
fitting is the reduction in the formal scaling in deMon2k to 
O(N2

basis
Nauxis) , with “basis” and “auxis” being deMon2k key 

words that refer to the AO and auxiliary basis sets, respec-
tively. For most applications, satisfactory auxiliary basis sets 
have cardinality Nauxis ≈ 4Nbasis . The resulting formal cubic 
scaling can be reduced further by means of integral screen-
ing techniques (based on the Cauchy–Schwarz inequality) 
and asymptotic expansions [35, 36]. Though valuable, those 
deMon2k aspects are not relevant here.

3 � ADFT formulation

Use of EH[ñ] to ease the EH[n] computational burden brings 
us, as already discussed, to the numerical integration of the 
XC potential. That task scales formally as O(N2

basis
Ngrid) , 

where Ngrid is the number of numerical integration grid 
points. Reduction in that burden in ADFT is by substitution 
of Exc[ñ] for Exc[n] [1]. The analysis given in that paper (and 
in Refs. [27, 29] as well) focused upon functional derivatives 
of the substitute, ñ-dependent expression that are related 
properly to the functional derivatives �∕�n in the KS equa-
tion. But no analysis of the relationship between functionals 
themselves, that is, the original n-dependent and substituted 
ñ-dependent ones, was presented. We therefore address that 
issue.

Begin by reiterating the obvious. The auxiliary density is 
a functional of the KS electron density. In the auxiliary basis 
representation that is explicit:

The second line follows from Eq. (14). The matrix �−1 is 
guaranteed to exist since the Coulomb operator 1∕r12 induces 
a metric (in other words, it defines a positive definite kernel).

Before proceeding a remark is needed. In robust Cou-
lomb fitting there is a crucial but usually unstated assump-
tion about the auxiliary basis {�} , namely that it is capable 
of representing the target density n in a meaningful way. The 
mathematical difficulty arises from the constrained search 

(17)ẼH[ñ] = EH[ñ] + 𝜆Ne.

(18)𝜆 = {[ ñ | n ] − [ ñ | ñ ]}∕Ne

(19)

ñ[n;�] =
∑

i

xi[n] 𝛼i(�)

=
∑

i,j

(
�

−1
)
ij
Jj[n]𝛼i(�) .
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formulation of DFT. For any given finite basis, there might 
be “perverse” densities for which the minimization, Eq. (12) 
either leaves unacceptably large errors EH[Δn] or, worse for 
the argument below, for which 𝛿ñ[n]∕𝛿n does not exist or has 
difficult properties. Known conditions [32] on what consti-
tutes a proper density include

Typical practice is to choose the auxiliary basis {�} so that 
it resembles closely the orbital basis product in Eq. (8) and 
gives ñ that obeys at least (21) and (22) and satisfies (20) at 
least to acceptable numerical precision. In what follows we 
assume that is enough to provide well-defined 𝛿ñ∕𝛿n . See 
discussion below also.

In consequence of the fact that ñ is a functional of n, 
both EH[ñ] and Exc[ñ] also are implicit functionals of n(�) . 
They are not, in general, identical with the original ones. 
Instead, they are new auxiliary density functionals that are 
intended to be made as close as possible to the originals in 
the context of use of ñ . We can say that, in a sense, ADFT is 
a black-box that transforms a given density functional into 
an auxiliary density functional. The issue raised is the extent 
to which general properties of that auxiliary functional can 
be established.

For the classical Coulomb repulsion, we define the auxH 
functional as

As just discussed, it is identical to EH[ñ[n] ] when uncon-
strained variational Coulomb fitting is used. Recall Eq. (16). 
In ADFT, the auxXC functional is defined as

Since both auxH and auxXC are implicit functionals of n(�) , 
the functional derivative chain rule gives their respective 
potentials in the Euler equation (KS equation) for the origi-
nal n(�):

(20)∫ d�n(�) =Ne

(21)n(�) ≥ 0 almost everywhere

(22)∫ d�|∇n1∕2(�)|2 <∞

(23)∫ d�|∇n1∕3(�)|3 <∞.

(24)EauxH[n] ∶= ẼH[n, ñ[n] ].

(25)EauxXC[n] ∶= Exc[ñ[n] ]

(26)vauxH(�) ∶=∫ d�1
𝛿EH[ñ]

𝛿ñ(�1)

𝛿ñ[n;�1]

𝛿n(�)

and

Note the tilde atop ṽH[ñ] and ṽXC[ñ] . That notation is to 
make explicit the distinction with the standard KS poten-
tials. Equation (26) has 𝛿EH[ñ]∕𝛿ñ . That does not denote a 
simple change of functional variable. Rather, the functional 
derivative is taken only with respect to auxiliary densities 
representable by the prescribed auxiliary basis set {�} . The 
same is true for Eq. (28). The same notation will appear 
for higher functional derivatives, see below. The functional 
derivative of the auxiliary density with respect to the KS 
density follows from Eq. (19) as

Then, the auxH potential is

where we used Eq. (13) twice, once each in going from the 
first to the second line and again from the second to the third 
line. The corresponding equation for the auxXC potential is

where

Computationally, much has been gained with this procedure. 
First, as in ordinary variational Coulomb fitting, we have 

(27)≡� d�1ṽH[ñ(�1)]
𝛿ñ[n;�1]

𝛿n(�)

(28)vauxXC(�) ∶=∫ d�1
𝛿Exc[ñ]

𝛿ñ(�1)

𝛿ñ[n;�1]

𝛿n(�)

(29)≡� d�1ṽXC[ñ]
𝛿ñ[n;�1]

𝛿n(�)
.

(30)

𝛿ñ[n;�1]

𝛿n(�)
=
∑

i,j

𝛼i(�1)
(
�

−1
)
ij

𝛿Jj[n]

𝛿n(�)

=
∑

i,j

𝛼i(�1)
(
�

−1
)
ij ∫ d�3

𝛼j(�3)

|� − �3|
.

(31)

vauxH(�) =∫ d�1

[(

∫ d�2
ñ(�2)

r12

)(
∑

i,j

(
�

−1
)
ij
𝛼i(�1)∫ d�3

𝛼j(�3)

|� − �3|

)]

=
∑

i,j

Ji[n]
(
�

−1
)
ij ∫ d�3

𝛼j(�3)

|� − �3|

=∫ d�3
ñ(�3)

|� − �3|

(32)

vauxXC(�) =∫ d�1

�
ṽXC[ñ(�1)]

�
�

i,j

𝛼i(�1)
�
�

−1
�
ij ∫ d�3

𝛼j(�3)

�� − �3�

��

=∫ d�3

∑
i zi𝛼i(�3)

�� − �3�
= ∫ d�3

ñxc(�3)

�� − �3�

(33)zi ∶=
∑

j

(
�

−1
)
ij ∫ d�1ṽXC[ñ(�1)]𝛼j(�1)
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reduced the formal quartic scaling to cubic. Second, the part 
that needs a numerical integration, Exc[ñ] and Eq. (33), never 
references n(�) . Furthermore, the integral remaining in Eq. 
(32) can be done analytically and can be combined readily 
with Eq. (31) simply by summing the x and z vectors (no 
significant additional computational work load).

Something interesting and a bit peculiar has been intro-
duced formally however with respect to the energy E[n]. We 
turn to that next.

4 � ADFT energy ambiguity

Three distinct KS equations have emerged. Associated 
with each is a total energy. The issue of interest is their 
relationship.

The familiar, conventional KS equation of course involves 
no reference to an auxiliary density,

It determines the target density n(�) , Eq. (1) for the given 
vext(�) . In molecular codes, the usual procedure for evaluat-
ing the total energy is to compute the KS kinetic energy, 
Ts[n] , explicitly but an alternative is to use the eigenvalue 
sum to avoid that (as is done in many solid-state codes), thus

The second KS equation is the version with the “aux” poten-
tials just introduced, Eqs. (31), vauxH(�) , and (32) vauxXC(�) , 
that handle ñ[n] . It is

subject to

(34)

{
−
1

2
∇2 + vH[n(�)] + vXC[n(�)] + vext(�)

}
�j(�) = �j�j(�).

(35)

Etot[n] =
∑

j

fj�j − ∫ d�n(�)
{
vH(�)∕2 + vXC(�)

}
+ EXC[n].

(36)

{
−
1

2
∇2 + vauxH[ñR(�)] + vauxXC[ñR(�)] + vext(�)

}
𝜙j,R(�)

= 𝜀j,R𝜙j,R(�),

(37)

nR(�) =
∑

j

fj,R|𝜙j,R|2

nR(�) =ñR(�) + Δn(�) �[Δn|Δn] ≤ 𝜀tol

ñR(�) =

Nauxis∑

i

xi[nR] 𝛼i(�) .

The subscript “R” notation is to make explicit the existence 
of these last restrictions (37) upon the variational extremum 
from which Eq. (36) arises, namely those densities nR(�) that 
can be represented with the expansion (6) to precision crite-
rion �tol imposed upon the Coulomb error from Δn . Observe 
that except in the limit of a complete auxiliary basis {�} , 
the orbitals from (36) are not the same as delivered by the 
standard, conventional KS equation. Hence, neither is the 
density. Because Eq. (36) is explicitly functionally depend-
ent only upon ñR(�) , at SCF convergence nR(�) = ñR(�) to 
numerical precision. By that we mean the following. The 
Coulomb metric is used in practice by setting some tolerance 
between the fitted and orbital densities associated with Eq. 
(37). An exact SCF solution of that equation would reduce 
the difference between nR and ñR to within that Coulomb 
metric tolerance. But the SCF solution itself has a separate 
tolerance. Therefore, the two densities can differ such that 
the Coulomb metric tolerance still is met but the Coulomb 
metric error is larger than would be the case if the two den-
sities were identical. In essence nR = ñR + ΔnR + ΔnSCF 
such that nevertheless [ΔnR + ΔnSCF|ΔnR + ΔnSCF] ≤ �tol . 
Though both nR(�) and ñR(�) are implicit functionals of the 
original n(�) , in the case of a fixed, finite {�} set there is no 
way to invert the transformation and recover n(�).

Evaluation of the corresponding total energy via the 
eigenvalue sum in this case and use of Eq. (25) gives

In this case, because the variation is restricted, appeal to the 
constrained search formulation of DFT [33, 34] and to the 
properties of ẼH[ñ] , Eq. (16), might seem to show that this 
energy would lie at or above the energy for the true density, 
Etot,R[nR] ≥ Etot[n] . In fact, that argument does not hold. The 
problem is related to the intrinsic property of variational 
Coulomb fitting. Not only is EH[nR] a lower bound to EH[n] , 
but it is unknown whether EXC[nR] has a bounding relation-
ship with EXC[n] . For ADFT as implemented in deMon2k, 
because there is no normalization constraint on Δn , it is easy 
to demonstrate that EXC[nR] can be either above or below 
Exc[n] . Simply consider Slater local exchange for very small 
magnitude Δn . One has

(38)

Etot,R[nR] =
∑

j

fj,R�j,R − ∫ d�nR(�){vauxH[nR(�)]∕2

+ vauxXC[nR(�)]} + EXC[nR].

(39)

Ex[n] = Ex[ñ + Δn]

= −cx ∫ d�(ñ + Δn)4∕3 ≈ −cx ∫ d�[ñ4∕3 +
4

3
ñ1∕3Δn]

= Ex[ñ] −
4

3
cx ∫ d�ñ1∕3Δn .
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If Δn > 0 everywhere, Ex[ñ] is an upper bound to Ex[n] and 
conversely for Δn < 0 everywhere. Because EH[n] is much 
larger than |EXC[n]| however, a common numerical outcome 
for deMon2k is that the ADFT total energy is slightly below 
the ordinary KS energy. An informal observation is that Δn 
usually is positive near nuclear sites, which typically makes 
Ex[ñ] > Ex[n] the most common result. There is a small 
additional complication from the SCF numerical precision 
issue. Instead of Eq. (38) what actually would be calculated 
in ADFT is

Depending on the relationship of the quality of the orbital 
and auxiliary basis sets, there can be a disparity between the 
two energies. Usually it is small.

The third possible KS equation follows from straight 
substitution of ñ into the original HK Levy–Lieb density 
functional (for the same vext ) and variation with respect to 
ñ . This amounts to standard KS development but directly on 
densities that are linearly expandable under variational Cou-
lomb fitting. (The notation can be deceptive. Again, this is 
not the same as a change of variable symbols in the original 
KS equation.) As a result, the functional derivatives 𝛿ñ∕𝛿n 
do not appear and immediately one has

Observe that the Hartree potential is the same as in the 
previous Euler equation, vauxH but the XC potential is not. 
That inconsistency arises from the fact that free variation 
of a functional (in this case Exc ) with respect to a restricted 
domain without any accounting of the restriction is incon-
sistent. The notation includes the requirement that follows 
from the requirement of “straight substitution,” namely that 
the density from the KS orbitals

(�i are occupation numbers) must be ñ(�) at every step of the 
SCF cycle. Although this is another form of an auxiliary 
DFT, we are unaware of its being used, perhaps because 
of the internal contradiction involved. In essence, however, 
it is fit-to-fit. A perfect second fit to ñ1∕3 for XC would be 
precisely that. From the success of fit-to-fit, we surmise that 
the formal inconsistency is not a prohibitive practical issue 
if the auxiliary basis sets are adequate. However, the exist-
ence of that inconsistency makes analysis of fit-to-fit for 
the finite {�} case essentially impossible. ADFT stands in 
contrast to that.

(40)

Etot,R[nR] ≈
∑

j

fj,R𝜖j,R − ∫ d�ñR(�){vauxH[ñR(�)]∕2

+ vauxXC[ñR(�)]} + EXC[ñR] .

(41)

{
−
1

2
∇2 + vauxH[ñ(�)] + vXC[ñ(�)] + vext(�)

}
𝜑̃j(�) = 𝜖j𝜑̃j(�) .

(42)𝜂(�) ∶=
∑

i

𝜈i|𝜑̃i(�)|2 ,

5 � Time‑dependent ADFT

It is straightforward to extend the ground state ADFT for-
mulation of Sect. 3 to time-dependent DFT (tdDFT). The 
requirement is to compute the second functional derivatives 
of both the auxH and auxXC functionals. Those kernels then 
can be used directly in any standard time-dependent-DFT 
formulation in the adiabatic approximation.

The corresponding equations for the kernels are

Note that fauxH(�1, �2) is not just the simple 1∕r12 kernel. In 
this case, the quadratures on grids again involve only ñ and 
the auxiliary functions {�} , as in the ground state case,

If Casida’s formulation of linear response td-DFT is used 
[37], the resulting linear response td-ADFT equations will 
be the same as previously obtained in [38] and [39]. How-
ever, these kernels also could be used in any other formula-
tion, such as in a Sternheimer approach, or the extensions 
to obtain other excited state properties, e.g., Refs. [40, 41].

It is important to note that, by using the kernels just dis-
played, the resulting td-ADFT treatment will be internally 
consistent. This is different from other attempts to reduce 
the computational cost of td-DFT in which the perturbed 
density is fitted independently of the ground-state density 
[42, 43], or RI projectors are introduced directly into the td-
DFT equations or other response equations [44–47]. It has 
been noted that the introduction of RI projectors for integrals 
of the type [�i|fxc[n]|�j] might lead to numerical instabili-
ties [48]. Those instabilities arise when fxc ∼ n−2∕3 , which 
is obtained in the orbital basis, diverges faster than the rate 
of decay of the �i�j products.

6 � Observations and conclusions

The foregoing analysis exposes the relationship of direct use 
of auxiliary densities from variational Coulomb fitting in 
DFT equations that is fundamental to ADFT. It also directs 

(43)

fauxH(�1, �2) = ∫ d�3
𝛿vauxH(�1)

𝛿ñ(�3)

𝛿ñ(�3)

𝛿n(�2)

=
∑

ij

(
�

−1
)
ij

(

∫ d�3
𝛼i

r13

)(

∫ d�4

𝛼j

r24

)

(44)

fauxXC(�1, �2) =∫ d�3
𝛿vauxXC(�1)

𝛿ñ(�3)

𝛿ñ(�3)

𝛿n(�2)

=
∑

i,j,k,l

(
�

−1
)
ij

[
𝛼j

|||||

𝛿2Exc[ñ]

𝛿ñ(�)𝛿ñ(��)

|||||
𝛼k

]

(
�

−1
)
kl

(

∫ d�3
𝛼i

r13

)(

∫ d�4
𝛼l

r24

)
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attention to the restrictions imposed by the auxiliary basis 
set {�} . Those can lead to unwelcome technical limitations. 
Recently we have encountered one in deMon2k.

The context is de-orbitalized meta-GGA XC functionals 
[49–51]. The only trait relevant here is that such functionals 
depend upon the density Laplacian ∇2n . To support high-
throughput exploration of large molecules, deMon2k pro-
vides a facility for automated generation of auxiliary basis 
sets [52]. To facilitate that, the code architecture assumes 
a certain structure for the auxiliary function sets. All Her-
mite–Gaussian-type auxiliary orbitals are primitives (i.e., 
uncontracted). The functions are grouped in subsets accord-
ing to the Gaussian exponent. Each subset is comprised of 
all functions with angular momentum index from � = 0 to 
some maximum � . The problem with this shared exponent 
structure seems to be that it can induce features in ñ that can 
lead to unphysical features in ∇2ñ . Those in turn cause vauxXC 
to be very different from vXC for the deorbitalized meta-GGA 
functional known as SCAN-L. So far, the only resolution 
has been to use very rich auxiliary sets, e.g., GEN-A4 in 
deMon2k notation. Of course, this is a technical difficulty, 
not an intrinsic property of ADFT. But it is, we think, a use-
ful illustration of the discussion given above about the impli-
cations of variation over a restricted representation space.

A possible relationship we have not discussed is with 
the local-scaling version of DFT [53, 54]. Structurally it 
resembles the ADFT definition, Eq. (25), of EauxXC[n] rather 
closely, though the motivating physics seems quite different. 
Whether results proven from local scaling DFT could be 
used to improve ADFT remains to be investigated.
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