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Many-body localization from random magnetic anisotropy
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One of the main difficulties of observing many-body localization in natural solid-state materials is creating
strong enough disorder. A strong random local magnetic field is difficult to achieve in a solid state material. We
propose exploiting large random magnetic anisotropy, either in magnitude or direction, which can be realized
in organometallic quantum magnets. We present the phase diagram of an S = 1 Heisenberg chain in terms of
both a random magnetic anisotropy and a random magnetic field. The many-body localization phase emerges
with sufficiently large anisotropy under very small random fields. We propose candidate materials of doped
single-chain organometallic quantum magnets for realizing many-body localization, where either orientation
disorder or substitution of metal ions can create large random magnetic anisotropy required in our prediction.
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I. INTRODUCTION

Recently, extensive theoretical [1–3], numerical [4–7], and
experimental [8–14] evidence establishes that Anderson lo-
calization [15], the suppression of transport due to quenched
disorder, can survive interactions for sufficiently strong dis-
order. Such localization in the presence of interactions is
now known as many-body localization (MBL) [16–19] and
is understood as an exception of the eigenstate thermalization
hypothesis (ETH) [20,21], the foundation for understanding
the emergence of statistical mechanics in quantum mechanical
systems under unitary dynamics. Such localization effects can
impact not only electronics but also phononics [22], photonics
[23,24], and presumably magnonics [25]. MBL enables slow
dephasing [26], long-term memory of local initial states, and
localization-protected order [27], all of which may offer great
potential for applications in quantum computing.

Many-body localization has been experimentally observed
in fine-tuned artificial experimental platforms, including ultra-
cold atoms [8–10,13], trapped ions [11], a dipolar spin system
in diamond [12], and recently nuclear spins in a solid state
system [14], but it is yet to be observed in natural electronic
systems. Solid state spin systems can provide one possible
platform for experimental observation. Such spin systems
were considered in Anderson’s original paper. They are also
popular in the studies of MBL due to both their simplicity
[5–7] and experimental accessibility [11,14]. Disorder due to
a random magnetic field is used in most theoretical studies
[5,11].
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Instead of random field, random magnetic anisotropy is
more commonly seen in amorphous magnets [28]. We can
describe such materials using the following Hamiltonian (in
1D):

H =
L∑

i

[
JSi · Si+1 + hiS

z
i − Di(ni · S)2

]
, (1)

where J is the exchange coupling, hi, Di, and ni are magnetic
fields, magnetic anisotropy, and the anisotropy axis at each
site i, respectively. There have been few studies of localization
phenomena for spin waves in magnets with random anisotropy
[29–33], and these mostly used a semiclassical approach and
focused on the low-energy excitations, neglecting magnon-
magnon interaction. On the other hand, in the context of MBL,
even though no studies on random-anisotropy spin chains have
been reported, MBL has been studied in a closely related
model, the Bose-Hubbard model. The Hamiltonian (1) can
be transformed to the Bose-Hubbard model (plus higher-order
terms) by using the Holstein-Primakoff transformation S−

i =√
2S − nibi, S+

i = (S−
i )†

, Sz
i = ni − S,

H = − t
∑

〈i, j〉
(b†

i b j + b†
jbi ) + U

2

∑

i

ni(ni − 1) − μ
∑

i

ni

+ higher-order terms, (2)

where t = −JS, U = −2Di cos2 θi, and μ = 2JS − hi +
Di[S − (3S − 1) cos2 θi]. Previous works have given
numerical evidence for the MBL phase in the Bose-Hubbard
model a random on-site potential [34] or random on-site
interaction [35]. A spin chain with random anisotropy is
equivalent to a Bose-Hubbard system, with high-order terms
added, where U and μ are random but correlated.

Here we numerically study the many-body localization
transition (MBLT) in the S = 1 spin chain using the Heisen-
berg model with random magnetic anisotropies and under a
locally random magnetic field. The central result is a random
field strength Wh-anisotropy D phase diagram. Based on this
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phase diagram we discuss the possible realization of MBL
in solid state electronic materials, particularly, in disordered
organometallic quantum magnets.

II. MANY-BODY LOCALIZATION TRANSITION
BY RANDOM ANISOTROPY

Due to the absence of magnetic anisotropy in S = 1/2
system, S = 1 chain is the simplest system with magnetic
anisotropy and the most suitable for numerical study using
exact diagonalization. The Hamiltonian in Eq. (1) describes
an S = 1 chain of length L with random fields and random
anisotropy, where the random fields hi at each site are drawn
from a uniform distribution [−Wh,Wh]. The anisotropy con-
stants Di can be either uniform Di = D or drawn from [0,WD]
for WD > 0 or [WD, 0] for WD < 0. The anisotropy axis ni can
also be either uniform (along z axis) or drawn from the unit
sphere. Periodic boundary conditions are used. In the limit of
J = 0, the many-body eigenstates are simple product states
and the system is trivially localized. Therefore we consider a
finite J , which is set as 1 hereafter.

By increasing the strength of randomness of the parameters
above, we anticipate a transition from the thermal phase to
the MBL phase. Many properties can be used to distinguish
the two phases. Here we use two popular criteria: the mean
difference in local observables between adjacent eigenstates
[5] and spectral statistics [4]. Each of the criteria is first
averaged over more than 50 eigenpairs in the middle of the
spectrum for each sample and then averaged over samples
(disorder realizations). For the finite size L = 8, 10, and 12
considered in this work, we calculated 3000, 300, and 300
samples, respectively. Consider the expectation value of (Sz )2

at site i for the eigenstate n of sample α

m(n)
iα = 〈n|(Sz

i

)2|n〉. (3)

ETH requires that the difference in m(n)
iα between adjacent

eigenstates vanishes exponentially with increasing system
size. Thus this difference can serve as an indicator for MBL.
The logarithm of averaged |m(n)

iα − m(n+1)
iα |, m̄, as a function of

system size L can be fitted by a linear function

ln m̄ = μL + b. (4)

In the ergodic (thermal) phase, μ is negative and finite, while
in the MBL phase μ is zero.

Another diagnostic we use is the spectral statistics. In the
thermal phase, the energy spectrum has level statistics of
Gaussian-orthogonal ensemble (GOE) while a Poissonian (or
paired-Poisson) level statistics is expected for the localized
phase. These two types of statistics are manifested in the ratio
of adjacent energy gaps

rn = min(δn, δn−1)/max(δn, δn−1), (5)

where δn = En − En−1 and En’s are ordered many-body
eigenenergies. The average, r, of rn over states changes from
rGOE � 0.53 for the thermal phase [36] to rPoisson = 2 ln 2 −
1 � 0.39 for the MBL phase [4].

To simplify the calculation, we consider only states with
Sz

total = 0, which have the largest density of states. The
Hamiltonian with random anisotropy magnitude and fixed

FIG. 1. Average ratios of adjacent energy gaps as a function
of random field strength Wh for eigenpairs in the middle of the
spectrum. The inset shows that the curves for different system size
L are collapsed by a scaling form L1/ν (Wh − W ∗

h ), where W ∗
h =

7.09 ± 0.19 and ν = 1.25 ± 0.10.

anisotropy axis conserves Sz
total, so nonzero Sz

total states will
not be mixed in by dynamics. But the Hamiltonian with
random anisotropy axis does not conserve Sz

total. However,
even in this case we can still assume that Sz

total stays close
to zero. Therefore, in the rest of the paper, we will focus
on the Sz

total = 0 sector only. The shift-invert method [37]
will be used to calculate the eigenpairs in the middle of the
energy spectrum, corresponding to the infinite temperature if
the states are thermal.

To make contact with results in the literature [5,7,38], we
first consider the limit of zero anisotropy. The ratio of adjacent
energy gaps r as a function of the random field strength Wh is
shown in Fig. 1. As Wh is increased, we can see a transition
from the thermal phase to MBL phase at W ∗

h ∼ 8. A more
exact value of the critical random field strength W ∗

h can be
obtained via a finite-size scaling analysis. Scaling the disorder
strength Wh with a form x = L1/ν (Wh − W ∗

h ) yields a scaling
collapse of all data points (see inset of Fig. 1). Values of
W ∗

h and ν that give the best collapse are found to be W ∗
h =

7.09 ± 0.19 and ν = 1.25 ± 0.10. The statistical averages and
the error bars are calculated in the following manner. After
obtaining r for all the samples, at each Wh we bootstrap from
the original set of r values to generate a new set containing
the same number of r values then find their average. These
averages for all Wh are used to find a pair of W ∗

h and ν that
give the best collapse on a generalized logistic function in a
least-squares sense. This process is repeated 3000 times to
produce the average and standard deviation of those pairs.

The critical disorder W ∗
h � 7.09 for S = 1 chain is signif-

icantly larger than that of S = 1/2, W ∗(S=1/2)
h � 3.7, which

is consistent among different studies [7,38]. This can be
understood from observing that in the Hamiltonian (2), the
field term hi in μ does not depend on S, but all other nonzero
low-order terms scale with S. This observation leads to a
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FIG. 2. Random field strength Wh-uniform anisotropy strength D
phase diagram. Colors represent r, the averaged ratios of adjacent
energy gaps over the eigenstates in the middle of the spectrum. When
D increases, the critical random field W ∗

h decreases rapidly until
approaching a limit value of about 4.

scaling of the critical field parameter W ∗(S=1)
h = 2W ∗(S=1/2)

h �
7.4, close to the actual value of 7.09.

Next we introduce the effect of a uniform magnetic
anisotropy Di = D with fixed anisotropy axis. The effect of
D on MBLT is shown in Fig. 2. The energy spectrum in
the limit of J = 0 is independent of the overall sign of the
Hamiltonian, except for the addition of an offset. This means
that the eigenpairs in the middle of the spectrum have approx-
imate symmetry between D and −D when |D/J| � 1, and
therefore it is sufficient to show only positive D in the figure.
The critical random field W ∗

h decreases rapidly with increasing
anisotropy D, but appears to approach a finite value of about
4 when D � 10.

The more interesting case is the random anisotropy axis
model. To simulate this model, we keep a constant D across
different sites but randomly select ni, the direction of the
anisotropy axis, of each site from the unit sphere. Using
the diagnostic μ, the effect of D on MBLT is shown in Fig. 3,
the random field strength Wh-anisotropy D phase diagram. The
approximate symmetry between D and −D can be seen from
the phase diagram. The critical random field W ∗

h decreases
with the increasing random anisotropy D, but instead of satu-
rating in Fig. 2, there is a critical random anisotropy D∗ ∼ 10
beyond which any small Wh enables MBL. Our simulations
show that random anisotropy magnitude with fixed anisotropy
axis and random axis orientations with fixed magnitude give
quantitatively similar results, i.e., replacing D by WD in Fig. 3
gives an approximate phase diagram for random anisotropy
magnitude with axis fixed, so here we present only the results
of random axis. A natural question is whether there is MBLT
at Wh = 0. Figure 4 gives r as a function of Wh and D for
different system sizes, including the extreme case Wh = 0.
The phase boundaries in these subfigures are consistent with
Fig. 3 except for extra phase boundaries between r < 0.39
(red) and r = 0.39 (white). Inside the MBL phase (upper left)
this indicates a spectral transition from Poisson to paired-
Poisson statistics, since (almost) every eigenstate comes in

FIG. 3. Random field strength Wh-anisotropy D phase diagram.
The colors represent μ defined in Eq. (3), characterizing how the spin
expectation value fluctuates between adjacent eigenstates. μ = 0
indicates the violation of ETH, i.e., MBL phase, and μ < 0 is the
ergodic phase.

pairs and r = 0 in the limit of infinite D. The paired-Poisson
regime shrinks with the increasing system size as shown in
Fig. 4. This is because larger systems have smaller gaps
(∝DL/3L), so the energy splitting by exchange coupling and
fields has a larger impact on the spectrum. Therefore it is
more difficult for large systems to enter the paired-Poisson
regime, and this spectral transition is merely a size effect
and absent in the thermodynamic limit. The D → ∞,Wh = 0
point becomes singular in the sense that r = 0 at that point
while elsewhere in the MBL phase r = 0.39.

III. POSSIBLE REALIZATION OF MBL IN
ORGANOMETALLIC QUANTUM MAGNETS

In this section, we discuss the feasibility of realizing MBL
in naturally disordered materials, particularly in organometal-
lic quantum magnets. There is a large variety of magnetic ma-
terials including the more traditional inorganic ones and the
newer organometallic hybrid materials, e.g., single molecule
magnets (SMMs) [39], single chain magnets (SCMs) [40],
magnetic metal-organic frameworks (MOFs) [41] etc. One of
the advantages of molecule-based metal-organic hybrid ma-
terials over traditional materials is their high customizability
attributed to the great number of candidate organic ligands.
The crystal field by the ligands around the metal ions is
the source of the strong anisotropy in organometallic hybrid
materials, and is sensitive to what ligand it is and how the
ligand is connected with the core. Therefore substitution of
either ligands [42] or metal ions [43] can be used to create
disordered anisotropy magnitude. The exchange couplings
between magnetic molecules are also bridged by the ligands,
so the exchange couplings can be tuned by substituting ligands
and be random as well [42]. The intermolecular interactions
are weak, so it is feasible to rotate each single molecule and
thus the magnetic anistropy can have different axes for each
molecule. Moreover, molecular magnets are known for being
well isolated from the environment and having long coherence
times (∼100 μs) [44–49]. Organometallic quantum magnets
can be in 1D [40,50], 2D [51,52], and 3D [39,53], providing
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(a)

(b)

(c)

FIG. 4. Random field strength Wh-magnetic anisotropy D phase
diagram for system size (a) L = 8, (b) 10, and (c) 12. Colors
represent r.

convenient experimental platforms for studying MBL beyond
1D.

As shown in the phase diagram (Fig. 3), we expect a
fully many-body localized phase in the S = 1 Heisenberg
chain with a uniform |D/J| � 10 but random anisotropy
axis. Spin-1 magnetic chains have been extensively studied
both theoretically and experimentally. The well-known Hal-
dane phase is expected in the range −0.25 � D/|J| < 0.97
and observed in several (mostly inorganic) materials, e.g.,

TABLE I. Magnetic anisotropy constant
D of pure DTN, Br-doped DTN, and I-
doped DTN from DFT calculations. The spins
are treated quantum mechanically using the
method in Ref. [58].

D (K)

DTN 6.3
Br-DTN 5.1
I-DTN 3.5

CsNiC13 [54]. The single-ion anisotropy in inorganic mate-
rials is usually small (<0.1 K) and D/J ratios much smaller
than 1 (<0.1), far below the required MBLT critical disorder.
Organometallic materials are better candidates due to their
large anisotropy and versatility of ligands, and have been used
to experimentally study the “large-D” phase [55]. We iden-
tify two most promising candidates among these materials.
The first material is Ni(C2H8N2)2Ni(CN)4, also known as
NENC. Its |D/J| ratio is reported to be 7.5 ∼ 9.5 [56,57]
and a theoretical work, which provides a better and more
consistent fit to the experimental data, shows that |D/J| =
37.6 (D = −6.4 K, J = 0.17 K) [55]. The second material,
Ni(C10H8N2)2Ni(CN)4 · H2O or NBYC, has |D/J| = 12.7
[57], even though the previous theoretical work gives 7.5 [55].

Another popular S = 1 spin chain is NiCl2 · 4SC(NH2)2

(DTN). Br-doped DTN is observed to exhibit Bose glass and
Mott glass phases and has D/J = 4.0 [42]. This is somewhat
below our estimated threshold for MBLT. Both the experiment
and density functional theory (DFT) calculations show a
decrease in D when Cl is substituted by Br or I (Table I). The
seemingly counterintuitive trend of D can be explained by the
fact that the substituted atom is on the ligand not the core.
DTN has an easy plane energies for both the out-of-easy-plane
orientation and the in-easy-plane orientation are enhanced by
doping heavier elements, but the enhancement for the in-plane
orientation is stronger. To increase the anisotropy energy, a
different doping strategy may be pursued.

We also studied the possibility of using external electric
fields to enhance the magnetic anisotropy energy (MAE) of
a DTN slab using DFT calculations, considering the strong
magnetoelectric coupling in DTN [59]. The DTN slab is
three unit cells thick, and the atomic structure is kept to
be bulklike under both zero and finite out-of-plane electric
fields. The atomic structure is fixed to better represent the
bulk environment and surface relaxations are ignored. Both
the magnetic hard axis and the bulk polarization are in-plane
along the Ni-Cl bonds, and the magnetic easy axis (along Ni-S
bonds) is perpendicular to the slab. When the electric field is
smaller than 0.15 V/Å, the MAE is almost unchanged. As
the electric field is increased beyond 0.15 V/Å, the MAE
decreases rapidly (Fig. 5). Even though magnetic anisotropy
was not enhanced in this calculation, it provides evidence for
possible random anisotropy magnitudes tunable by a random
electric field. Other directions of electric fields will be exam-
ined in a future study.

The required random orientation of molecules may be
obtained in the following manner. Many magnetic molecules

033183-4



MANY-BODY LOCALIZATION FROM RANDOM MAGNETIC … PHYSICAL REVIEW RESEARCH 1, 033183 (2019)

FIG. 5. (a) Magnetic anisotropy energy per Ni atom as a function
of external electric fields. (b) Relative energy vs the polar angle of
spin of Ni atoms for the DTN slab under different electric fields. For
each electric field, the minimal energy is chosen as a reference. The
data points are calculated results and the lines are for guiding the
eyes.

carry electric dipoles as well and the re-orientation of these
molecules does not cost much energy because intermolecular
interactions are usually weak. Putting these molecule on a
disordered substrate can lead to magnetic chains made up of
molecules with random orientation.

It is worth noting that there are, inevitably, some random
magnetic fields present in disordered quantum magnets. For
example, Mn12-ac crystals have been theorectically predicted
[60] and then experimentally confirmed [61] to be a realiza-
tion of random-field Ising ferromagnetism. The randomness
is due to the disorder of the acetic acid of crystallization that
induces small but finite distortion of Mn sites, resulting a
misalignment of the easy axis [62].

Experimentally probing MBL is a challenging task, espe-
cially in natural solid state systems. One of the experimental
signatures can be the remanent magnetization after a quench

FIG. 6. The spin-spin correlation as a function of the distance
d for different D. Each data point is an average over 200 samples
with size L = 12. The correlation is independent of d in the thermal
phase (D = 5) and decays exponentially with d in the localized phase
(D = 20).

setup. Initially a strong field is needed to fully polarize the
spin chain. In the thermal phase, the initial magnetization
is completely relaxed, while a finite remanent magnetization
is expected in the localized phase [63]. Another probe is
the spin-spin correlation function, which can be measured
by magnetic neutron scattering, and provides a criterion that
distinguishes the thermal and MBL phases [5]. The spin-spin
correlation function of two spins at site i and j for eigenstate
|n〉 is given by

Cn(i, j) = 〈n|Sz
i Sz

j |n〉 − 〈n|Sz
i |n〉〈n|Sz

j |n〉. (6)

Figure 6 shows ln |Cn(0, d )| averaged over eigenstates and
samples as a function of the distance d , and the behavior of the
correlation is different between the thermal and MBL phase.
When D < D∗, i.e., in the thermal phase, the spins are entan-
gled and correlated even if far apart; the correlation between
two well-separated sites is independent of their distance, as
shown by D = 5 in Fig. 6. On the contrary, in the localized
phase the correlation between two spins decay exponentially
with their distance as can be seen in D = 20.

The inevitable coupling between electrons and the phonon
bath in solids is a well-known obstacle for experimentally ob-
serving Anderson localization [64] and also destabilizes MBL
[65]. Diagnostics for MBL in the spectral function, including
its inhomogenity and the zero frequency gap are present as
long as the coupling is smaller than the characteristic energy
scales of the system [66]. A recent study proposed that driving
the system by light can compensate the effect of phonons [67].
In their work, large site-to-site variations of local temperature
was used as a criterion for the MBL phase, and can be
measured by various techniques, e.g., thermoreflectance [68].

IV. CONCLUSION AND OUTLOOK

We have shown that, in absence of magnetic anisotropy
S = 1 has a similar behavior to S = 1/2 chain. MBLT occurs
at W ∗

h � 7.09, significantly larger than that of S = 1/2. W ∗
h

decreases with an increasing uniform anisotropy and ap-
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proaches a limit around 4. A large anisotropy reduces W ∗
h and

random fields are not needed when |D/J| � 10. Considering
that it is difficult to generate large random local magnetic
fields in natural materials but much easier to create disorder
with random anisotropy axes, this numerical study paves the
way to realizing MBL in natural electronic materials. We
discussed the possibility of using organometallic quantum
magnets for this purpose, and proposed two candidate com-
pounds NENC and NBYC.

The difficulty of numerically studying chains with higher
spins or spin systems beyond 1D greatly limited the size of the
system we considered. New numerical and theoretical tools
are needed. It was reported recently that Dirac-Frenkel time-
dependent variational principle as applied to matrix product
states is able to study chains up to 100 sites [69]. The presence
of phonons is apparently the biggest obstacle for experimen-

tally realizing MBL. Further study is needed to address how
to compensate the effect of phonons and what experimental
signatures can be used in the presence of phonons.
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